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A Unified Algorithm for Determining the Reduced (Niggli) Cell 
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An algorithm is proposed which enables one, starting from an arbitrary primitive cell of a three-dimen- 
sional Bravais lattice, to reach the Niggli form requisite for the lattice type determination. 

Introduction 

By a Niggli cell we understand (Santoro & Mighell, 
1970; Gruber, 1973) that cell of a three-dimensional 
Bravais lattice which is based on the reduction theory 
of the positive definite quadratic forms (Eisenstein, 
1851). Its significance is in its uniqueness and in the 
possibility that it can be used for determining the 
Bravais type of the lattice (Niggli, 1928; Az~iroff & 
Buerger, 1958). However, how to obtain it is not 
straightforward. 

By means of an algorithm which was proposed by 
Buerger (1957, 1960) and made more economical by 
Gruber (1973) we can reach fairly simply the Buerger 
cell, i.e. the cell characterized by the shortest three 
non-coplanar translations. If this Buerger cell in the 
given lattice is unique, it is simultaneously the Niggli 
cell and the problem is solved. But this need not be 
always the case. As Gruber (1973) has shown, there 
exist Bravais latlices with two, three, four or even five 
different Buerge} cells. Then we have to apply the table 
given in Santoro & Mighell (1970) which contains 
transformation matrices by means of which any 
Buerger cell may be converted into the Niggli cell. It is 
clear that the application of a table is not welcome if a 
computer is employed. 

However, this two-part procedure may be reduced to 
one which makes use solely of an algorithm. Moreover, 
the new algorithm is almost as simple as the original. 
This is due to the fact that Santoro & Mighell's trans- 
formations (which are, by the way, not unique) are 
very similar to though not identical with those which 
occur in the Buerger algorithm. Thus they can be, 
when slightly modified, directly incorporated into it 
(Kriv3~, 1973). 

The question arises whether it is impossible for the 
new algorithm to get into an infinite cycle. This danger 
does not exist in the original algorithm since at every 
step (save the normalization) the sum a +b  + c dimin- 
ishes. With the present algorithm, however, the sum 
may remain unchanged. We have not found any better 
way to overcome this difficulty than to analyse all pos- 
sible cases which satisfy the new additional conditions. 

This is a tedious approach but guarantees that' the 
algorithm will end after a finite number of steps. That 
the resulting values describe a Niggli cell is apparent. 

The basis of the algorithm is Gruber's (1973) form- 
ulation. Here, however, the function entier is avoided 
since it could, under the new conditions, be equal to 
zero and the algorithm would fail. It is replaced by the 
function sign (meaning sign x =  1 for x > 0  and sign 
x =  - 1  for x <  0) which avoids this disadvantage. The 
points 1,2, 3, 4 provide the normalization. We can start 
from any primitive cell 

a, b, c, cos ~, cos fl, cos y 

of the Bravais lattice in question. If 

A,B,  C, ~, ~, ~ (1) 

are the resulting values obtained by performing the 
algorithm then the matrix 

stands for the well-known Niggli form and can be im- 
mediately used for the lattice type determination 
(Niggli, 1928; Azgroff & Buerger, 1958). The values 

a'=VA , b '=[ /B ,  e'=~/C 
cos ~' = ~/2b'c', cos fl' = q/2a'c', cos y' = ~/2a'b' 

describe the Niggli cell in the usual way. 

Algorithm 

0. Put (aZ, b',c z) ~ (A,B, C) , 
(2be cos c~, 2ae cos fl, 2ab cos y) ~ (~, r/, 0 .  

1. If A >  B or (A=B, I~1 > I~1), change (A,O +-+ (B,~7) . 
2. If B > C  or (B=C, I~1 > I~1), change (B,~7)~---r(C,O 

and go to 1. 
3. If ~q~> 0, put ( l~ l , l r t l , l~ l )  - +  ( ~ , r t , 0  • 
4. If ~r/~_< 0, put ( - I ~ 1 , -  I ~ 1 , - I ~ 1 ) - +  ( ~ , ~ , 0  • 
5. If I~l > B or (~ = B, 2q < 0 or (~ = - B, ~ < 0),  

p u t B + C - ~  s i g n ~ C ,  
r / -~  sign ~ -+ r/, 

- 2 B  sign ~ --~ 
and go to 1. 
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6. If Irtl > A or (r/= A, 2~ < 0 or (r/= - A, ~ < 0) ,  
put A + C -  11 sign r/---> C ,  

- ~  sign r/--> ~ ,  
r / - 2 A  sign r/---> r/ 

and go to 1. 
7. If I~l > A or (~= A, 2~ < q) or ( ( =  - A, r/< 0) ,  

put A + B -  ~ sign ~ ---> B ,  
- r /  sign ~ ---> ~ ,  
- 2 A  sign ~.--> 

and go to 1. 
8. I f ~ + r / + f f + A + B < 0  or 

[ ~ + r / + ~ + A + B = 0 ,  2(A + r / ) + ~ > 0 ] ,  
put A + B+ C+~ +JT+~ --+ C,  

2 B + ~  +~ --> ~ ,  
2A + r / + ~  --> r/ 

and go to 1. 

Example 

Suppose the values 

a=3.000 b=5.196 c=2.000 
~=103°55 ' f l=109°28 ' y=134°5Y 

characterize a primitive cell of the lattice L. According 
to point 0 of the algorithm we put 

A = 9 ,  B = 2 7 ,  C = 4 ,  ~ = 3 ,  r/=:g, ~=2--2. 

applied to the values in the same row. The letters B , N  
denote [after normalizing the values (1)] the Buerger* 
and Niggli cells, respectively. The Niggli matrix form 
reads 

and shows that L is triclinic. The parameters of the 
Niggli cell are 

a' = 2.000 b' = 3.000 c' = 3-000 
~' = 60 ° 00' fl' = 75 ° 31' 7' = 70° 32' .  

This example is, deliberately, rather an exceptional 
case. As a rule, when reaching a Buerger cell which is 
not a Niggli cell, we get the Niggli cell in the next step. 
Only when 

A < B ,  ~ + r / = - B ,  - A / 2 < r / < 0 ,  ~ = - A  

[the values (1) being normalized] do we need two steps. 
This can be ascertained from the Table compiled by 
Gruber (1973) which lists all ambiguities between 
Buerger cells. 

* A Buerger cell can be recognized by fulfilling the in- 
equalities I~I<B, Ir/l<A, Ill<A, ~+~I+(+A+B>O [suppos- 
ing the values (1) are normalized] or by minimizing the sum 
A+B+C. 

Table 1. The progress of  the algorithm 

A B C ~ ~1 
2. 9 27 4 ~ 7[ 
1. 9 4 27 5 ~ 7[ 
5. 4 9 27 ~2 5 7[ 
6. 4 9 14 7[ ~ 7[ 
7. 4 9 9 g T 2[ B 
3. 4 9 9 § ]" 4 
5. 4 9 9 9 1 4 B 
3. 4 9 9 ~I ~ 4 

4 9 9 9 3 4 B N 

The error is nowhere greater than 0.025 %. The al- 
gorithm then runs as in Table 1. The first column of 
Table 1 indicates the points of the algorithm which are 
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